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This paper considers the effect of a pressure point moving over the surface of a 
fluid which is composed of two layers of different densities, the lower layer being 
of infhite depth. The method is the same as that used by Crapper (1964) for the 
same problem with a uniform fluid. The resulting waves are in two sets, the first 
being the normal surface wave for the uniform ocean, with a slight change in 
amplitude, and the second an internal wave. The crests of the internal wave 
have a pattern similar to that of the surface wave for a shallow uniform fluid. 

1. Introduction and formal solution 
Hudimac (1961) considers the waves generated by a simple source moving a t  

constant speed and constant depth below the surface of a two-layer ocean in 
which the layers have different densities, and the lower layer is of infinite depth. 
He points out that in reality the ocean often has this kind of structure. The prob- 
lem is solved by Fourier analysis, and an asymptotic expansion is found for the 
velocity potential. However, the method of dealing with the asymptotics is 
rather cumbersome, and is much simplified in the present paper, which also 
calculates the effect of the stratification on the ‘surface wave mode’, i.e. the 
waves which would be present without the stratification. Hudimac did not give 
this result. 

In  order to keep the detail as simple as possible the present paper is restricted 
to the waves generated by a pressure point moving over the surface. The sub- 
merged source disturbance considered by Hudimac is not essentially more 
difficult, and the wave patterns are identical, but the surface pressure disturbance 
is simpler and enables easy comparison with Crapper (1964), in which the problem 
was considered for a uniform ocean. The method we shall use is exactly the same 
as in that paper, and is due to Lighthill (1960). 

We consider a steady situation in which the pressure point is fixed at  the origin 
and the flow far upstream has velocity U in the x-direction. When undisturbed, 
the upper layer of fluid, which has density p, occupies the region - h  < z < 0 
and the lower layer, which has densityp( 1 + s), occupies the region - 00 < x < - h. 
In  each layer the flow is irrotational, and the velocity potentials are 

ux  + $1, ux + $2; (1) 

and $2 are assumed small so that the boundary conditions can be linearized. 
The continuity equation gives 

V2$, = V2$, = 0. (2) 
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The linearized surface boundary condition, from Bernoulli's equation, neglecting 
surface tension, is 

P6(x)6(y)+" U2+2U-' +pgy = const. = gpU2 on z = 0, (3) 

where P is the magnitude of the applied pressure; 6( ) is the Dirac delta-function; 
g is the acceleration due to gravity; and ~ ( x ,  y, z )  is the elevation above its initial 
level of the streamline which when undisturbed was at height x .  We also have 
the kinematic condition 

4 a$ ax ) 

where $ = 
face 7 has to be the same in each layer, i.e. 

or $2 according as we are in the upper or lower layer. At the inter- 

at x = -h, 9 1  =- 842 
ax ax ( 5 )  

and the pressure has to be continuous, which gives, from the linearized Bernoulli 
equation, 

Finally, $ 2 - + 0  as z+--co. (7) 

We now adopt non-dimensional variables, taking U2/g as unit of length, U as 
unit of velocity and p as unit of density. We can then simply put U = g = p = 1 
in equations (1) to (7), and 7, #', etc., are now non-dimensional. 

Defining Fourier transforms by 

#@7 Y, 4 = S_Ia exp +Py)l 4'o'(&, P, 4 da@, (8) 

we take transforms of (2), giving 

T)- a22 ( a 2  + p2) $KO = 0; = $!o), or $LO), (9) 

Thus $lo) = A(a ,p )eks+B(a ,p )e -k z  (10) 

and $La) = C(a,,8) ekz, (11) 

where k = J(a2+p2) > 0, (12) 

and we have eliminated a possible second term in the right-hand side of (1 1) 
by using (7). The functions A ,  B and C can now be determined from the trans- 
forms of (3) to (6). Then taking the inverse transform we find 
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P(a, /3) = k[sk sinh k(x + h) - a2{( 1 + s) sinh k(x + i t) + cosh k(x + h)}]; 
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where 
(15) 

Gs(a,P) = a 2 - k ;  (16) 

(17) G,(a, p)  = [sk sinh kh - a2{( 1 + s) cosh kh + sinh kh}]. 

As h -+ co in (13) or h -+ 0 in (14) we recover the integral for a uniform ocean 
(Crapper 1964, equation (9) with h + co, cr = 0). In  addition, we note that the 
two integrals are equal at the interface z = - h. 

2. Asymptotic expansions 
We now use the method of Crapper (1964), following that of Lighthill (1960). 

As the method is given in detail in the earlier paper it will only be outlined here. 
We first choose new independent variables E,  p such that 

a = Ecos8-psin8, p = zsin8+pcosO, (18) 

where x = r cos 8, y = r sin 8 for the particular r = (x, y) which we consider. 
We then evaluate the integral by contour integration, the main contribution 
coming from poles where either Gs or GI vanishes. The poles are on the real E axis, 
and to avoid the non-uniqueness of the result which this presents we would 
normally use a radiation condition. Here, however, we shall simply assume that 
the waves appear downstream of the disturbance, i.e. for cos 8 =- 0. The results 
of the earlier paper, together with those of Hudimac, confirm that this is the actual 
result. Thus we have 

where the summations are over parts of the lines Gs = 0 and G I  = 0 respectively, 
the actual parts depending on the precise radiation condition. There is a corre- 
sponding result for the lower layer. 

Now the p integral is evaluated by the method of stationary phase. It turns out 
that the stationary points are where the normals to the lines Gs = 0 and GI = 0 
are parallel to r, for the particular x, y chosen; they only count for cos8 > 0 
because of the radiation condition. Since the poles in the E integral give rise to 
waves, this simple geometrical condition gives the vector wave-number for 
given x, y and makes it easy to draw the wave-crests. If there are no normals in a 
given direction, then there are no waves in that direction. The wave-crests depend 
on the nature of the singularity lines Gs = 0 and G I  = 0. With no stratification 
(s = 0 )  the only singularities are where Gs = 0. Hence this line describes a surface 
wave mode. We shall see that G I  = 0 describes an internal wave mode. The final 
result can be written 
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where K,, KI are the curvatures of the singularity lines; sgn K = 1 according 
as K i 0; and the summation is over the stationary points (Zm, p,) for which 
cos 0 > 0. Because of the symmetry of the curves G, = 0 and GI = 0 these appear 
in pairs, and a real result is obtained. 

3. Results 
The curve G, = 0 is shown in figure 1; it is exactly the same curve as in the 

case of a uniform ocean of infinite depth. Thus it leads to the familiar pattern 
of waves on the surface. The only difference from the uniform ocean case is a 
factor in the amplitude. Here one factor in the residue at  the pole G, = 0 is 

2 

1 

P o  

-1 

-2 

I ; r=o  

/Gs = 0 

FIGURE 1. Singularity lines G, = 0 and GI = 0 (for h = 1, s = 0.001 (F - 32)). The 
lines are symmetrical about both axes and only the right-hand half is shown. 

and in the uniform ocean case this is replaced simply by kekz. The other factors 
in the first term of (20) are equal in the two cases. Thus the surface wave mode has 
its amplitude changed by a factor (1 + se-2klL)-1 in the presence of stratification, 
and its amplitude still decays exponentially with depth. Because of the k in this 
factor the difference of amplitude changes across the wave pattern, since k 
takes the value for the appropriate stationary point, being maximum on the 
x-axis where k is least (the normal to G, = 0 parallel to (x, 0) is at  the point 
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(1,O) in the (a,P)-plane (see figure l ) ,  and this is therefore the stationary point 
for waves on the x-axis.) 

The curvature K ,  actually vanishes at  points with normals parallel to r when 
101 = 19" 28', along the edges of the wedge in which the waves are contained. The 
first term in (20)  is then not correct (and it is not very good where K, is small) 
and the correct version which shows a decay of amplitude proportional to 
r-*, is Crapper (1964, equation (38)), with the amplitude multiplied by 

(1 + s e--2kh)--1 

and the appropriate value of k(k = $). 

pends on both s and h. This equation is best written in the form 
The other mode depends on the shape of the curve GI = 0, which in turn de- 

sk tanh kh 
1 + s + tanh kh 

a2 = 

For 2F2 = (1 +s)/sh > 1 (Hudimac (1961) calls this parameter P2, not to be 
confused with our $'(a, P ) )  the curve is similar to  that shown for particular values 
in figure 1, while for S2 < 1 the shape is similar to that of the curve G, = 0, but 
cutting the a-axis nearer to the origin. Hudimac calculates amplitudes, etc., 
for the values 9 = +, 2 and in some cases up to 9 = 10, with s = 0.001; these 
correspond to non-dimensional depths h N 4000, 250 and 10 respectively. The 
results for a uniform ocean of non-dimensional finite depth h show that for h >, 2 
there is no appreciable change from the infinite depth solution. Any density 
stratification with a depth h 2 is therefore not going to make any change 
from the uniform ocean results for the present problem. With s = 0.001 and 
h = 2 we have F w 22, and to make 9 = 1 with h = 2 we need s = 1, i.e. the 
lower layer with density twice that of the upper layer-a situation not likely to 
arise in practice. Hudimac's calculations therefore do not have much value for 
the pressure point problem. However, as pointed out above, he actually considers 
the waves generated by a submerged source, which in his calculations he takes to 
be near to the interface between the layers. Thus in his case, with large values of 
h, the surface wave mode is likely to be of no importance, but small values of 9, 
which essentially means a slowly moving source, may be important. Since when 
F < 1 the curve G, = 0 is similar to the curve Gs = 0, thepredictedwave patterns 
will clearly be similar to those of the surface wave mode, although with different 
(larger) wedge angles and longer wavelength, rather like surface waves on a 
uniform ocean of not too small finite depth (Crapper (1964) 1 < h < 2).  

However, we can concentrate on 2F > 1. As k -+ 00 the curve (22)  behaves 
like a parabola a2 = s p / ( Z + s ) ,  so that for small s the curve is very close to the 
p-axis. If we put a = k cos x we find that as k + 0, x + ~os-~(S- l ) .  Thus the 
normals to the curve make angles between zero and & 0, = 5 (+m- ~ o s - l ( F - ~ ) )  
with the x-axis, and the waves appear only within the wedge IS1 < 8,. The wave 
patterns are similar to those given by Hudimac (1961, figure 7) and, indeed, 
are like the surface wave crests for a shallow uniform ocean. They correspond to 
the diverging wave system of the surface wave mode. For fixed h, 0, = O(s4) and 
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will in practice be a small angle, much smaller than the corresponding angle for 
the surface wave mode. 

In  considering the amplitude of the internal wave mode there are three features 
which we wish to investigate. The first is the behaviour with depth, which in the 
upper layer is given by 

(23) 

since z does not appear in the other factors. To evaluate this factor, substitute 
for a2 from (32) into (15); 

lsk2 [sinh k(z  + h) {( 1 + s) cosh kh + sinh kh} 
- sinh kh {( 1 + s) sinh k(z + h) + cosh k(z  + h)} ] ]  

IF(a,P)lc,=o = -- I(l+s)coshkh+sinhkhI Y 

sk2 [sinh kz + s e--kh sinh k(z  + h)] 
= 1 ( l+s)coshkh+ sinhkh 

after some manipulation. As depth increases ( x  < 0) the first term in the numer- 
ator increases rapidly, while the second has a maximum at the surface and falls 
off to zero at  the interface z = - h. For smalls, however, the first term dominates, 
and the amplitude increases rapidly with depth down to the interface, beyond 
which (35) is no longer part of the solution. Below the interface, (14) shows that 
the amplitude falls off exponentially with depth. Thus this part of the solution 
really is an internal wave. 

The second feature is the behaviour of the amplitude as a function of s, for 
fixed h. To consider this in full is very complicated, and here we shall be content 
with finding the behaviour for small s. We note that from (22), regarding k as 
0(1), a2 = O(s) and therefore /3 = O(1) .  Then from equations (15), (16) and (17), 
F = O(s), Gs = 0(1) and GI = O(s). Crapper (1964, equations (24), (25)) shows 
that 

and 

and here, since 8 = O(s*), cos 0 = O( 1) and sin 0 = O(s*). It follows that 

a/aE ajaa = O(s-4) and a/ap slap = O ( i ) ,  

and hence aGz/aE = O(sB) and K~ = O(s*) giving a contribution to 7 from the 
internal wave of O(s4). We conclude that the amplitude of the internalwaves tends 
to zero only slowly as the density difference disappears, and we have the possi- 
bility of large internal waves for small differences of density. Thirdly, if s is fixed 
and we let h become small, similar arguments, with now B = O(h*) and x = O(h) in 
the upper layer, show that the internal wave amplitude is O(hi) ,  and shallow 
layers may give large internal waves. 
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